早稲田大学 商学部 傾向対策解答解説 2019問題5

早稲田大学 商学部 傾向対策解答解説 2019問題5

早稲田大学 商学部 傾向対策解答解説 2019問題5

早稲田大学 商学部 傾向対策解答解説 2019問題5

早稲田大学商学部の英語過去問2019年の問題解答解説全訳です。受験生の入試対策のためにプロ家庭教師が出題傾向を分析します。


【大問】

2019年 問題

【形式】

: 適語補充+文章理解+英文和訳

【表題】

: 人工知能は人間の脳を模倣すべきか Should Artificial Intelligence Copy the Human Brain

【作者】

: クリストファー・ミムス Christopher Mims

【対策】

: 説明文。長文を読み進めながら適語補充し、まとめて内容理解が問われます。問題2から問題5は同じ形式となります。文章内容は、AIと人間の脳を比較して、現在の研究にはどのような課題があるかをまとめています。

【用語】

: 人工知能 AI ディープラーニング

【目安時間】

: 20分

早稲田大学商学部への合格対策カリキュラムをプロ家庭教師に指導依頼できます。

スポンサーさん

早稲田商学部 2019問題5


【問題5 文章読解】



次の英文を読み,下記の設問に答えよ。

Everything we're injecting artificial intelligence into - self-driving vehicles, robot doctors, the social credit scores of more than a billion Chinese citizens and more - depends on a debate about how to make AI do things it can't, at present. What was once merely an academic concern now has consequence for billions of dollars' worth of talent and infrastructure and, you know, the future of the human race.

That debate comes down to ( 1 ) the current approaches to building AI are enough. With a few tweaks and the application of enough brute computational force, will the technology we have now be capable of true "intelligence,” in the sense we imagine it exists in an animal or a human?

On one side of this debate are the proponents of “deep learning” – an approach that, since a landmark paper in 2012 by a trio of researchers at the University of Toronto, has exploded in popularity. While far from the only approach to artificial intelligence, it has demonstrated abilities beyond ( 2 ) previous AI technology could accomplish.

The “deep” in “deep learning” refers to the number of layers of artificial neurons in a network of them. As in their biological equivalents, artificial nervous systems with more layers of neurons are capable of more sophisticated kinds of learning.

To understand artificial neural networks, picture a bunch of points in space connected to one another like the neurons in our brains. Adjusting the strength of the connections between these points is a rough analog for what happens when a brain learns. The result is a neural wiring diagram, with favorable pathways to desired results, such as correctly identifying an image.

( 3 ) its limitations, deep learning powers the gold-standard software in image and voice recognition, machine translation and beating humans at board games. It's the driving force behind Google's custom AI chips and the AI cloud service that runs on them, as well as Nvidia Corp.'s self driving car technology.

Andrew Ng, one of the most influential minds in AI and former head of Google Brain and Baidu Inc.'s AI division, has said that with deep learning, a computer should be able to do any mental task that the average human can accomplish in a second or less. Naturally, the computer should be able to do it even faster than a human.

On the other side of this debate are researchers such as Gary Marcus, former head of Uber Technologies Inc.'s AI division and currently a New York University professor, who argues that deep learning is woefully insufficient for accomplishing the sorts of things we've been promised. It could never, for instance, be able to take over all white collar jobs and lead us to a glorious future of fully automated luxury communism.

Dr. Marcus says that to get to “general intelligence” – which requires the ability to reason, learn on one's own and build mental models of the world - will take more than what today's AI can achieve.

To go further with AI, “we need to take inspiration from nature," says Dr. Marcus. That means coming up with other kinds of artificial neural networks, and in some cases giving them innate, pre-programmed knowledge---like the instincts that all living things are born with.

Researchers are also trying to give AI the ability to build mental models of the world, something even babies can accomplish by the end of their first year. ( 4 ), while a deep-learning system that has seen a million school buses might fail the first time it's shown one that's upside-down, an AI with a mental model of what constitutes a bus---wheels, a yellow chassis, etc.---would have less trouble recognizing an inverted one.

Until we figure out how to make our Als more intelligent and robust, we're going to have to hand code into them a great deal of existing human knowledge, says Dr. Marcus. That is, a lot of the "intelligence" in artificial intelligence systems like self-driving software isn't artificial at all. As much as companies need to train their vehicles on as many miles of real roads as possible, for now, making these systems truly capable will still require inputting a great deal of logic that reflects the decisions made by the engineers who build and test them.


Christopher Mims. Should Artificial Intelligence Copy the Human Brain.




設問1 空所( 1 )~( 4 )を埋めるのにもっとも適当なものを(a)~(d)からそれぞれ1つ選び、マーク解答用紙の所定欄にマークせよ。

(1)
(a) after
(b) how
(c) whether
(d) why

(2)
(a) that
(b) what
(c) when
(d) whose

(3)
(a) Despite
(b) Over
(c) Through
(d) With

(4)
(a) Conversely
(b) However
(c) Moreover
(d) Thus


設問2 次の1から4について、本文の内容に合うものはマーク解答用紙のTの欄に、合わないものはFの欄にマークせよ。

1. Self-driving vehicles, robot doctors, and the social-credit scores of more than a billion Chinese citizens have all been realized thanks to AI.
2. To advance AI, Dr. Marcus claims that it is necessary to devise artificial neural networks which are similar to the instincts that all living things are born with.
3. An Al with a mental model of what constitutes a bus would require a million bus images to recognize one that is wrong side up.
4. It is still necessary for human beings to incorporate a great deal of logic into Als manually in order to make them more intelligent and robust.


設問3 下線部(A)を日本語に直し、記述解答用紙に書きなさい。


設問4. 本文のタイトルとしてもっとも適当なものを(a)~(d)から1つ選び、マーク解答用紙の所定欄にマークせよ。

(a) Can Artificial Intelligence Ever Realize Human Dreams?
(b) Endeavor to Equip Artificial Intelligence With the Ability to Learn From Experience
(c) Should Artificial Intelligence Copy the Human Brain?
(d) The Reasons Why Artificial Intelligence Can Never Achieve “Deep Learning"

早稲田商学部 2019問題5 解答


【問題5 文章読解 解答】



設問1
1 c
2 b
3 a
4 d

設問2
1 F
2 T
3 F
4 T

設問3 それらを作り試験する技術者によって行われる決定

設問4 c

早稲田商学部 2019問題5 解説


【問題5 文章読解 解説】



説明文。長文を読み進めながら適語補充し、まとめて内容理解が問われます。大問2から大問5は同じ形式となります。文章内容は、AIと人間の脳を比較して、現在の研究にはどのような課題があるかをまとめています。


【重要表現】


brute computational force:  プログラムに工夫を凝らさずに、コンピューターの計算能力に頼って力ずくで処理すること。cf. A brute force attack⇒総当たり攻撃。可能なパスワードを手当たり次第に試してシステムに侵入すること。

gold-standard:  1. (通貨の)金本位制  2.優秀な模範例   

Google BrainとBaidu Inc.:  世界のIT企業の勢力は現在、アメリカのGAFA(ガーファ、Google, Amazon, Facebook, Appleを指す)に対して、中国のBAT(Baidu百度、Alibaba阿里巴巴、Tencent騰訊)が技術覇権を競っていて、新冷戦と呼ばれている。

早稲田商学部 2019問題5 完成文


【問題5 文章読解 完成文】


Everything we're injecting artificial intelligence into - self-driving vehicles, robot doctors, the social credit scores of more than a billion Chinese citizens and more - depends on a debate about how to make AI do things it can't, at present. What was once merely an academic concern now has consequence for billions of dollars' worth of talent and infrastructure and, you know, the future of the human race.

That debate comes down to whether the current approaches to building AI are enough. With a few tweaks and the application of enough brute computational force, will the technology we have now be capable of true "intelligence,” in the sense we imagine it exists in an animal or a human?

On one side of this debate are the proponents of “deep learning” – an approach that, since a landmark paper in 2012 by a trio of researchers at the University of Toronto, has exploded in popularity. While far from the only approach to artificial intelligence, it has demonstrated abilities beyond what previous AI technology could accomplish.

The “deep” in “deep learning” refers to the number of layers of artificial neurons in a network of them. As in their biological equivalents, artificial nervous systems with more layers of neurons are capable of more sophisticated kinds of learning.

To understand artificial neural networks, picture a bunch of points in space connected to one another like the neurons in our brains. Adjusting the strength of the connections between these points is a rough analog for what happens when a brain learns. The result is a neural wiring diagram, with favorable pathways to desired results, such as correctly identifying an image.

Despite its limitations, deep learning powers the gold-standard software in image and voice recognition, machine translation and beating humans at board games. It's the driving force behind Google's custom AI chips and the AI cloud service that runs on them, as well as Nvidia Corp.'s self driving car technology.

Andrew Ng, one of the most influential minds in AI and former head of Google Brain and Baidu Inc.'s AI division, has said that with deep learning, a computer should be able to do any mental task that the average human can accomplish in a second or less. Naturally, the computer should be able to do it even faster than a human.

On the other side of this debate are researchers such as Gary Marcus, former head of Uber Technologies Inc.'s AI division and currently a New York University professor, who argues that deep learning is woefully insufficient for accomplishing the sorts of things we've been promised. It could never, for instance, be able to take over all white collar jobs and lead us to a glorious future of fully automated luxury communism.

Dr. Marcus says that to get to “general intelligence” – which requires the ability to reason, learn on one's own and build mental models of the world - will take more than what today's AI can achieve.

To go further with AI, “we need to take inspiration from nature," says Dr. Marcus. That means coming up with other kinds of artificial neural networks, and in some cases giving them innate, pre-programmed knowledge---like the instincts that all living things are born with.

Researchers are also trying to give AI the ability to build mental models of the world, something even babies can accomplish by the end of their first year. Thus, while a deep-learning system that has seen a million school buses might fail the first time it's shown one that's upside-down, an AI with a mental model of what constitutes a bus---wheels, a yellow chassis, etc.---would have less trouble recognizing an inverted one.

Until we figure out how to make our AIs more intelligent and robust, we're going to have to hand code into them a great deal of existing human knowledge, says Dr. Marcus. That is, a lot of the "intelligence" in artificial intelligence systems like self-driving software isn't artificial at all. As much as companies need to train their vehicles on as many miles of real roads as possible, for now, making these systems truly capable will still require inputting a great deal of logic that reflects the decisions made by the engineers who build and test them.

早稲田商学部 2019問題5 全訳


【問題5 文章読解 全訳】


Everything we're injecting artificial intelligence into - self-driving vehicles, robot doctors, the social credit scores of more than a billion Chinese citizens and more - depends on a debate about how to make AI do things it can't, at present. What was once merely an academic concern now has consequence for billions of dollars' worth of talent and infrastructure and, you know, the future of the human race.

私たちが人工知能を導入しているもの全てー自動運転車両、ロボット医師、10億人以上の中国人民の社会的信用スコアなどーは、現時点ではAIにできないことをどうやってやらせるようにするかという議論にかかっている。かつては単なる学術的関心事でしかなかったことが、現在、数十億ドル相当の才能とインフラ、そしてつまりは人類の未来に結果を及ぼすのだ。

That debate comes down to whether the current approaches to building AI are enough. With a few tweaks and the application of enough brute computational force, will the technology we have now be capable of true "intelligence,” in the sense we imagine it exists in an animal or a human?

議論は、AIの構築に対する現在のアプローチで十分なのかという点に行き当たる。いくつかの微調整と十分なブルート・コンピューティング・フォースを適用することで、私たちが今持っているテクノロジーは、動物や人間に存在すると考えられている真の「インテリジェンス」に成りうるのだろうか?

On one side of this debate are the proponents of “deep learning” – an approach that, since a landmark paper in 2012 by a trio of researchers at the University of Toronto, has exploded in popularity. While far from the only approach to artificial intelligence, it has demonstrated abilities beyond what previous AI technology could accomplish.

この議論の片側には、「ディープラーニング」の支持者たちがいる。ディープラーニングとは、トロント大学の3人の研究者による2012年の画期的な論文以来、爆発的に人気が高まったアプローチである。人工知能への唯一のアプローチと言うには程遠いものの、従来のAI技術が達成できたものを超える能力を発揮してきた。

The “deep” in “deep learning” refers to the number of layers of artificial neurons in a network of them. As in their biological equivalents, artificial nervous systems with more layers of neurons are capable of more sophisticated kinds of learning.

「ディープラーニング」の「ディープ」とは、ネットワーク内の人工ニューロンの層の数を指す。生物学的な神経システム同様、より多くのニューロン層を備えた人工神経システムには、より高度な種類の学習が可能になる。

To understand artificial neural networks, picture a bunch of points in space connected to one another like the neurons in our brains. Adjusting the strength of the connections between these points is a rough analog for what happens when a brain learns. The result is a neural wiring diagram, with favorable pathways to desired results, such as correctly identifying an image.

人工ニューラルネットワークを理解するには、脳内のニューロンのように空間内で互いに接続された多数の点を想像してみるとよい。これらの点と点の間の接続の強さを調整することは、脳が学習したときに起こる事とだいたい類似している。その結果は、たとえば画像を正しく識別するなど、望む結果へと向かう好ましい経路を備えたニューラル配線図である。

Despite its limitations, deep learning powers the gold-standard software in image and voice recognition, machine translation and beating humans at board games. It's the driving force behind Google's custom AI chips and the AI cloud service that runs on them, as well as Nvidia Corp.'s self driving car technology.

限界があるとはいえ、ディープラーニングは、画像と音声の認識、機械翻訳、ボードゲームで人間を打ち負かすというようなソフトウェアで模範的に力を発揮している。そこで実行されているのは、エヌビディア・コーポレーションの自動運転カーテクノロジーだけでなく、GoogleのカスタムAIチップとAIクラウドサービスの後ろにある駆動力なのである。

Andrew Ng, one of the most influential minds in AI and former head of Google Brain and Baidu Inc.'s AI division, has said that with deep learning, a computer should be able to do any mental task that the average human can accomplish in a second or less. Naturally, the computer should be able to do it even faster than a human.

AIで最も影響力のあるマインドの持ち主のひとりであり、Google BrainとBaidu Inc.のAI部門の元責任者であるアンドリュー・エンは、ディープラ—ニングによって、コンピューターは平均的な人間が1秒以下で達成できるあらゆる精神的なタスクを実行できるようになるだろうと述べている。当然のことながら、コンピューターは人間よりも高速で実行できるはずである。

On the other side of this debate are researchers such as Gary Marcus, former head of Uber Technologies Inc.'s AI division and currently a New York University professor, who argues that deep learning is woefully insufficient for accomplishing the sorts of things we've been promised. It could never, for instance, be able to take over all white collar jobs and lead us to a glorious future of fully automated luxury communism.

この議論の対局にはウーバー・テクノロジーズのAI部門の前部長であり、現在ニューヨーク大学の教授であるゲイリー・マーカスなどの研究者がいて、ディープラーニングはこれまで約束してきた事柄を達成するには恐ろしく不十分だと主張している。たとえば、すべてのホワイトカラーの仕事を引き継ぐことはできず、完全に自動化された贅沢な共産主義の輝かしい未来に私たちを導くことはできなかった。

Dr. Marcus says that to get to “general intelligence” – which requires the ability to reason, learn on one's own and build mental models of the world - will take more than what today's AI can achieve.

マーカス博士は、「一般的な知能」に到達するには、推論し、自分自身で学び、世界のメンタルモデルを構築する能力が必要であるため、今日のAIが達成できる以上のものが必要であると言う。

To go further with AI, “we need to take inspiration from nature," says Dr. Marcus. That means coming up with other kinds of artificial neural networks, and in some cases giving them innate, pre-programmed knowledge---like the instincts that all living things are born with.

AIと共にさらなる先へと進むためには、「自然からインスピレーションを得る必要がある」とマーカス博士は言う。これは、別の種類の人工ニューラルネットワークを考え出すこと、時にはそのネットワークに、すべての生き物が生まれながらに持つ本能のような先天的な、あらかじめプログラムされた知識を与えるということを意味する。

Researchers are also trying to give AI the ability to build mental models of the world, something even babies can accomplish by the end of their first year. Thus, while a deep-learning system that has seen a million school buses might fail the first time it's shown one that's upside-down, an AI with a mental model of what constitutes a bus---wheels, a yellow chassis, etc.---would have less trouble recognizing an inverted one.

研究者たちはまた、AIに世界のメンタルモデルを構築する能力を与えようとしている。これは、乳児が1歳になるまでに達成できる能力である。 こうして、ディープラーニングシステムは100万台のスクールバスを見ていても、逆さまになったバスを初めて見せられたら認識に失敗するかもしれないが,一方、バスを構成するもの---車輪、黄色のシャーシなど--をメンタルモデルとして持っているAIなら、反転したものをスクールバスと認識できないというトラブルは減るだろう。

Until we figure out how to make our AIs more intelligent and robust, we're going to have to hand code into them a great deal of existing human knowledge, says Dr. Marcus. That is, a lot of the "intelligence" in artificial intelligence systems like self-driving software isn't artificial at all. As much as companies need to train their vehicles on as many miles of real roads as possible, for now, making these systems truly capable will still require inputting a great deal of logic that reflects the decisions made by the engineers who build and test them.

AIをよりインテリジェントで堅牢にする方法を見つけるまでは、既存の人間の多くの知識をコードにして渡さなければならない、とマーカス博士は言う。つまり、自動運転ソフトウェアのような人工知能システムの「インテリジェンス」の多くは、まったく人工的ではないのだ。企業が実際の道路で出来るだけ長い距離を走らせて車両を訓練する必要がある限り、取り敢えず、これらのシステムを真に機能させるには、システムを構築してテストするエンジニアが下した決定を反映する大量のロジックを入力する必要があるのだ。

似ている記事
スポンサーさん